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EDITOR'S NOTE:

This article represents 1 of 12 commentaries from selected representatives of the international scientific community, industry,
and regulatory agencies, on the need for substantial changes and improvements in Ecological Risk Assessment. The series of articles
is the follow-up to the Special Session “New Challenges in Ecological Risk Assessment,” held at the 6th SETAC World Congress/
SETAC Europe 22nd Annual Meeting in Berlin (May 2012), and the opinion of the Scientific Committees of the European
Commission, DG SANCO (SCHER, SCHENIR, SCCS) on “Addressing the New Challenges for Risk Assessment.”

ABSTRACT

Ecological risk assessments (ERAs) are not used as well as they could be in risk management. Part of the problem is that they
often lack ecological relevance; that is, they fail to grasp necessary ecological complexities. Adding realism and complexity can
be difficult and costly. We argue that predictive systems models (PSMs) can provide a way of capturing complexity and
ecological relevance cost-effectively. However, addressing complexity and ecological relevance is only part of the problem.
Ecological risk assessments often fail to meet the needs of risk managers by not providing assessments that relate to
protection goals and by expressing risk in ratios that cannot be weighed against the costs of interventions. Once more, PSMs
can be designed to provide outputs in terms of value-relevant effects that are modulated against exposure and that can
provide a better basis for decision making than arbitrary ratios or threshold values. Recent developments in the modeling and
its potential for implementation by risk assessors and risk managers are beginning to demonstrate how PSMs can be
practically applied in risk assessment and the advantages that doing so could have. Integr Environ Assess Manag 2013;9:e75—
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INTRODUCTION

Risk assessment of chemicals in the environment is intended
for use in risk management, and yet there is evidence that the
outputs of risk assessments are not driving risk management
decisions (NRC 2009; EC 2013a). One of the reasons for this
is that the risk assessments are not providing the kind of
information that risk managers need to make their decisions
about interventions. Here we explore the basis of this mismatch
specifically with regard to the ecological risk assessment (ERA)
of chemicals and suggest some remedies that are based on the
application of predictive systems models. Our focus is on the
European Union (EU) (e.g., Regulation (EC) 1107/2009),
where prospective risk assessments dominate, recognizing that
the situation in the United States is somewhat different in that
site-specific risk assessments of historical contamination have
more prominence.

Current methods for ecological risk assessment (ERA) in the
EU most often relate simple estimates of predicted or measured
exposure concentrations to effects measured in standard
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toxicity tests conducted under controlled laboratory conditions
(Van Leeuwen and Vermeire 2007). Measured effects
concentrations are most often divided by some fixed application
factor to arrive at an effects threshold (predicted no-effects
concentration) that accounts for uncertainties in extrapolating
effects from acute to chronic exposure, from the tested species
to others, and from laboratory to field. A risk characterization
ratio is calculated by comparing the measured or predicted
exposure concentration to the effects threshold to give an
indication as to whether the threshold of effects is likely to be
breached. For pesticides, the toxicity endpoint is divided by the
estimated exposure concentration (toxicity exposure ratio
[TER]), and this ratio is compared to a predefined threshold
value to judge whether risk is acceptable. Occasionally, if there
are toxicity data from multiple species, these will be fit to a
species sensitivity distribution and a percentile (often the 5th)
of the distribution, often with an application factor applied to it,
is used as the effects threshold. In rare instances (mostly
concerning pesticides) there will be limited results on exposure
and effects from mesocosm or semifield studies. However,
even in this case, the practice is to define a no-observed
effects threshold for comparison with a relevant exposure
concentration.

An important feature of the current approach to ERA is that
it follows a so-called tiered process that starts simply, with
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worst-case assumptions and seeks to become progressively
more realistic at higher tiers (Regulation EC 1107/2009).
The presumption is that if a chemical passes at a lower tier
there is no need for further assessment or intervention.
However, chemicals that fail lower tiers are subject to higher
tier tests and assessments that presumably are more realistic;
failure at the highest tier means that intervention would be
required.

Moving up the tiers involves more time, effort, and expense.
In the following, we argue that it is possible to improve realism
through a modeling approach that does not need to be very
expensive or time consuming. Improving realism in this kind of
way is necessary, but not sufficient, to enhance the usefulness of
ERAs as a basis for risk management. In addition, and to be
helpful to managers, ERAs have to be expressed in terms of
ecological effects that matter, because they are valued by the
public. Rather than being expressed as thresholds (i.e., risk
characterization ratios or TERs), ERAs should be expressed in
terms of concentration/dose responses (i.e., should quantify
how impacts decline with reducing exposure), so that managers
can better evaluate the consequences of restrictions on
chemicals against the benefits of reduced risk.

CURRENT METHODS FOR ECOLOGICAL RISK
ASSESSMENT LACK ECOLOGICAL REALISM

Although it is widely recognized that ecological variables,
such as temperature, food availability, habitat quality, and a
host of other factors can potentially influence the risks of
chemicals, such influences are routinely ignored in standard
ERAs. Although this may be pragmatic for screening-level (i.e.,
lower tier) assessments, it becomes increasingly problematic for
higher tiers that, by definition, are intended to incorporate
relevant complexity. A key question is whether adding
ecological realism into ERA is likely to increase or decrease
risk. The evidence on this question is equivocal, and the
literature contains examples of ecological complexities having
both positive and negative effects on risk.

An example of ecological complexity increasing risk is seen in
the case of indirect effects. In such cases, risk characterization
ratios derived from toxic effects of a chemical measured in the
species of interest underestimate the likely ecological impacts.
A classic example of indirect effects has been documented in an
18-year intensive study of the partridge, Perdix perdix, in
Sussex, England (see “Potts, 1986” summarized in Walker et al.
[2012]). Significant declines in partridge numbers between
approximately 1955 and 1985 were linked with an increase in
chick mortality. Different causes for increased chick mortality
were proposed, and it was eventually determined that the
mortality was caused by a decrease in density of preferred
insects that was in turn the result of increased herbicide use
reducing the food supply of the insect prey. In this case, a risk
characterization ratio based on expected exposure of partridge
and direct toxicity of herbicides to them would have indicated a
low-risk situation, but actual risks to bird populations would be
underestimated if indirect effects were not incorporated into
the risk assessment. In practice, ERAs try to address indirect
effects by testing toxicity in different taxonomic groups and
then basing risk characterization ratios on the most sensitive
group. The assumption here is that if risk to the most sensitive
group of species is avoided, the chances of indirect effects are
minimal. Unfortunately, this is a fairly coarse approach, and
there remain substantial uncertainties (e.g., related to untested
taxa, sensitivity of tested species to other members of the
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taxonomic group they are intended to represent, the extent to
which the endpoints measured in standard tests are good
predictors of relevant impacts, etc.).

An example of ecological complexity decreasing risk is
provided by Dalkvist et al. (2009). This study compared risk
estimated according to standard EU procedures for pesticide
risk assessment for mammals with the output of a sophisticated
individual-based model that simulated individual animals
moving about in a realistic landscape. An important difference
between the 2 risk scenarios is that the standard approach
assumes that all individuals in the population are equally
exposed to the pesticide, whereas in the model, only that
fraction of the population present in the sprayed parts of the
landscape is exposed. In this case, predictions from standard
procedures overestimate risk because they ignore habitat
complexity and assume that all individuals are equally exposed.
The analysis also demonstrated that animal ecology can be at
least as important in determining risk as the degree of toxicity of
the chemical being assessed. An important take-home message
from this example is that, given the relative amount of effort
that currently goes toward obtaining very precise and repeat-
able estimates of toxicity versus obtaining ecologically realistic
information for the risk scenario (e.g., on exposure, life history
of exposed species, etc.) under consideration, it would appear
that ERA efforts are being misdirected.

An example of ecological complexity both increasing and
decreasing risk involves the influence of density dependence.
Most natural populations are believed to be under some kind of
density limitation at least for some of the time. There is
evidence in the literature of density dependence both increasing
(Hayashi et al. 2009) and decreasing (Forbes et al. 2001) risk
and even examples of both within the same study depending on
the relative strengths of density dependence versus toxicity
effects (Linke-Gamenick et al. 1999).

It should not be surprising that adding ecological realism can
both increase and decrease risk, depending on the situation and
the type of complexity considered. What is more surprising is
that we use an approach to ERA that implicitly assumes that
using standard application factors can effectively capture the
wide range of ecological factors that potentially influence risk.
Some have claimed that adding ecological complexities into
ERA increases uncertainty (Wang and Luttik 2012). The
argument is that including more parameters, each of which is
associated with uncertainty, increases the uncertainty of the risk
estimates. In a strict technical sense, this would appear to be
true as evidenced by widening confidence bounds around
model predictions. However, and more importantly, if there are
indeed ecological complexities that influence risk, using models
thatignore them can result in very precise estimates of risk that
are completely wrong. Risk characterization ratios, by being
represented as a single number, give the impression that there
are no uncertainties, whereas these are hidden in the analyses
behind their calculation. Incorporating necessary ecological
complexities may make risk estimates more variable, but doing
so also makes the sources of uncertainty explicit and ideally can
be used to distinguish uncertainty from variability. Ideal risk
assessments would be both precise and accurate. Our point is
that risk quotients, although appearing very precise, hide
uncertainties—and they may also be inaccurate. We believe
that making the uncertainties explicit is helpful and that,
whereas we want to reduce uncertainties (e.g., from lack of
understanding), we do need to capture sources of variability
(e.g., among species) that matter for the risk assessment.
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This is not to imply that we have to add all possible ecological
complexities to estimate risk effectively. The challenges are to
decide which and how much complexity to include and to
clearly distinguish variability from uncertainty. The bottom line
is that ERA needs to incorporate complexities in a way that is
efficient, robust, transparent, understandable, and that makes
biological sense.

CURRENT ECOLOGICAL RISK ASSESSMENT OUTPUTS
ARE FAR REMOVED FROM PROTECTION GOALS AND
MANAGEMENT NEEDS

We make 3 points in this section: first that the thresholds
used in ERAs are not obviously related to ecologically relevant
endpoints; second, even if they were, there still needs to be an
explicit connection between the endpoints and the ecological
protection goals; and third, even if that is fulfilled, they still need
to be expressed on a continuous scale of concentration-dose-
response.

Endpoints used to estimate thresholds are not ecologically
relevant

A key question is, “what is the relationship between risk
characterization ratios and impacts on ecological protection
goals?” Unfortunately, there is a substantial body of literature
that would indicate that we either do not know, the relationship
is very uncertain, and/or the relationship varies widely across
categories of test species and environmental compartments.
Thresholds derived from standard ecotoxicological tests that
go into ERAs are in terms of the responses of individual
organisms to toxicants (i.e., their survival, reproduction, and
growth). What matters from an ecological point of view is
the likely impact on populations (to ensure persistence in
space and time) and on ecosystem structure and processes.
The literature shows that the level of protection at a population
level varies widely among toxicants, which means that risk
characterization ratios (or TERs) are not consistently
protective.

Luttik et al. (2011) showed that the level of protection
offered by first-tier pesticide risk assessments varies widely
among pesticides. For crustaceans, an average of 3.4% of species
would be exposed above their median lethal concentration in
10% of receiving surface waters that receive the maximum
allowable exposure to an individual pesticide. Furthermore,
this percentage varied widely among different pesticides and
reached a maximum of 41.4% of species. A similar analysis for
birds resulted in somewhat different values. This analysis clearly
demonstrates that the degree of protection offered by standard
first-tier assessments is highly variable—among chemicals and
among taxonomic groups. Hanson and Stark (2012) demon-
strated a huge amount of uncertainty in the ability of standard
acute and chronic endpoints to predict population-level risks.
Part of this kind of variability can be explained by common
effects at the individual level in different species translating into
different effects at the population level due to life-history
differences (Calow et al. 1997). A comprehensive analysis
comparing thresholds derived from species sensitivity distribu-
tions to effects of pesticides observed in mesocosm studies
(Maltby et al. 2009) has shown that, whereas SSD thresholds
may be protective if compared to mesocosm effects, they are
not at all predictive, thus demonstrating that the degree of
protection offered by current ERA approaches is not at all
consistent.
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Endpoints need to connect to protection goals

Risk managers have the responsibility of intervening to
ensure that ecological properties that matter for the public are
protected to an extent that is reasonable economically. One
way of capturing protection goals is in terms of impacts on
ecosystem services that, by definition, matter and are valued
(Forbes and Calow 2012a). That being so, it becomes important
to make explicit quantitative connections between the
ecological endpoints that are studied in ERA and these
ecosystem services. Although some steps are being made in
this direction in both Europe (EFSA PPR 2010) and the United
States (Munns et al. 2009), there is much more that can and
should be done in this area.

Thresholds are a blunt tool for risk managers

Ideally, risk management needs not only to know under what
circumstances to intervene but to what extent. Otherwise
potential benefits associated with the use of chemicals may be
lost, and resources used for intervention may be unnecessarily
spent. Thresholds are a flimsy basis for this kind of risk
management for 2 reasons. First, they can encourage no
intervention (below threshold) or complete banning (above
threshold). Second, to move beyond this all-or-nothing
situation, judgments are often made on the seriousness of
effects above thresholds and the extent to which these should be
managed. Because this is usually a nontransparent process,
it is hard to know how extensive it is, but it is clear that
professional judgments about the seriousness of risks are widely
used in ERA and can involve both risk assessors and risk
managers.

The consequence of all of the above is that results of ERAs
are not driving management decisions in the way that they
should (EC 2013a), yet the amount of resources spent on risk
assessments in various legislative contexts is high. Why put so
much effort into ERA if the output is not going to explicitly
inform decision making? The implication is that either such
resources could be better spent or that substantial improve-
ments are needed in ERA for it to provide information on which
risk managers can confidently rely.

PREDICTIVE SYSTEMS MODELS OFFER A PROMISING
TOOL FOR ERA

Trying to develop approaches to ERA that overcome the
weaknesses of the current approach is going to be very
challenging. Although there is no silver bullet, we believe
that predictive systems models (PSMs) can provide a tractable
basis by incorporating necessary ecological realism, by devel-
oping ecological production functions (to link responses of
organisms to chemicals to impacts on ecosystem service
delivery), and by providing concentration/dose-response rela-
tionships (Forbes and Calow 2012b). Predictive systems
models are models based on mechanistic understanding of
key processes and in which properties at higher levels of
biological organization emerge from processes operating at
lower levels of organization.

Predictive systems models can provide a sounder scientific
basis for addressing the extrapolation problems currently
approached with the use of uncertainty factors. Predictive
systems models provide abstractions of real systems yet
represent processes and their consequences across levels of
biological organization in a mechanistic way. For example,
toxicokinetic-toxicodynamic (TKTD) models link exposure
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with effects through detailed information on toxicokinetics
(i.e., uptake, distribution, biotransformation, and elimination),
and toxicodynamics (i.e., interaction of toxicant with its target
site). They are used to extrapolate toxicity among species and
across different exposure scenarios (Kretschmann et al. 2012).
Energy budget models represent the uptake of energy into
organisms and use in the various aspects of metabolism from
maintenance to growth and reproduction. In this way they can
represent the different physiologies of organisms and can
provide a mechanistic basis for extrapolating effects that
involve energy metabolism and its linkage to life-history
outcomes across species (Sibly et al. 2013). Demographic
models, such as matrix and metapopulation models, integrate
information on individual age- or stage-dependent survival and
reproduction to effects on population dynamics. They can be
used to extrapolate toxicant effects from the individual to
population level and to extrapolate across different life cycles
(Forbes et al. 2008). Agent- or individual-based models (ABMs)
are the newest and most flexible type of PSM with potential for
use in ERA. Agent-based models describe individual organisms
(agents) as discrete and unique entities that interact with each
other and their environment. The advantages of ABMs are that
they are not limited by mathematical tractability, they can
incorporate spatial and temporal variability, they can capture
interactions among species (e.g., through changes in food
supply or predation that may result in indirect effects), they can
capture interactions among multiple stressors, and they are
ideal for studying phenomena that cross levels of biological
organization and properties that emerge from interactions of
the parts within the system. In this way, ABMs can facilitate
mechanistic extrapolation from simplified laboratory tests to
more realistic field situations, extrapolate from acute to chronic
effects, and, with adjustment of certain model parameters, can
be used to extrapolate across species.

For example, an important concern in risk assessment is how
spatial variability in key habitat features can influence exposure
to, and hence effects of, chemicals in populations. Meli et al.
(2013) developed an ABM to explore how various patterns of
spatial heterogeneity in soil contaminant levels, in combination
with avoidance behavior, could influence risk to collembolan
populations from contaminated soil. Liu et al. (2013)
developed an ABM to examine how typical landscape dynamics
and the schedule of pesticide application can influence
pesticide risk to wood mouse, Apodemus sylvaticus, populations
in realistic agricultural landscapes.

Another important question for ERA is how chemical impacts
(alone and in combination with other stressors) on organism
physiology result in effects on individual life-history traits and
population dynamics. Martin et al. (2012) developed a
generic ABM that is based on Dynamic Energy Budget (DEB)
theory. The model can be used to link impacts on energy
allocation processes to life history and population dynamics, to
explore influences of environmental variables such as food
density, and can incorporate spatial effects (e.g., variability
in food supply or exposure to toxicants) on individuals and
populations.

Yet another issue that is often of concern in ERA is how
differences in exposure scenarios, such as timing and time
course of exposure, are likely to influence risk. This is extremely
difficult to address empirically because of time and cost
constraints and is an obvious question to address with PSMs. For
example, Wang and Grimm (2010) developed a structurally
realistic but relatively simple ABM of the common shrew (Sorex
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araneus) to test how landscape structure and the timing of
pesticide application can influence risk to shrew populations.
They also used the model to assess the relative sensitivity of
different population-level endpoints for detecting risk. TKTD
models are ideal for predicting effects from time varying
exposures (Nyman et al. 2012), and could be linked with ABMs
to explore population-level impacts of this kind of realistic
exposure scenario.

The above are just a few examples to demonstrate how PSMs
can improve the ecological realism of ERA and address concerns
of risk assessors and risk managers that would be extremely
difficult, if not impossible, to study using empirical approaches.
The usefulness of these PSMs is not only in generating concrete
estimates of risk, but in providing insights into which ecological
factors are most likely to ameliorate or aggravate risk. As such,
they can provide an important source of hypotheses for
designing focused studies and a useful background for risk
management.

Most of the advances in PSMs for ERA have been developed
in the context of pesticide risk assessment. This is likely due
to a combination of more toxicity test data being available, a
more restricted set of exposure scenarios and landscape
types to consider, and a greater consensus on focal species of
concern than there is for other chemical classes. However,
the benefits that PSMs could bring to ERA of other chemical
classes is no less, and indeed these models can offer powerful
tools for assessing risks of other human activities and impacts
(e.g., habitat destruction, climate change, etc.) on ecological
systems.

CHALLENGES IN MODEL DEVELOPMENT AND
IMPLEMENTATION

Of course, there are challenges for model development and
implementation. Many in the risk assessment/management
community are not familiar with PSMs. Particularly ABMs can
incorporate a lot of complexity and can therefore suffer from
significant “black box” issues. Even if the ABMs are described
transparently (Grimm et al. 2010), their great flexibility means
that it takes more effort (compared to, for example, matrix
models) to understand what the model is doing and why. Often,
there is a lack of basic ecological information (life-history
features and behavior) for parameterizing PSMs for particular
species. This underlines the need for more basic ecological
research for focal species to use in PSMs.

Over and above improving the science to enhance model
development, there is a need for substantial stakeholder
involvement to facilitate effective model implementation. For
example, it would be beneficial for ERA purposes to have
consensus on modeling platform, communication of model
features, extrapolation issues, and questions of scale. Last but not
least, we need to have agreement on quantifiable protection goals
before we can develop models to predict impacts on them.
Although such discussions are contentious and difficult, they
are a necessary prerequisite to developing a sound approach
to ERA.

Significant progress is being made on the incorporation of
PSMs (sometimes called mechanistic effect models) into ERA.
Several workshops have been organized with the intent to bring
together diverse groups of stakeholders to explore the barriers
and solutions to the use of such models in ERA (i.e., LEMTOX
[Thorbek et al. 2010], RUCQ9 [Forbes et al. 2011], and
Modelink [Hommen 2013]). An advisory group (MEMoRisk)
has been established under SETAC Europe to explore and
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evaluate the benefit of mechanistic effect modeling for the risk
assessment of chemicals in Europe and elsewhere (Preuss
et al. 2009). The European Union has funded a major Marie
Curie Initial Training Network (CREAM, http://cream-itn.eu/
) (Grimm et al. 2009) to train the next generation of ecological
modelers. CREAM is developing and experimentally validating
a suite of mechanistic effect models for organisms relevant for
chemical risk assessments. An important goal of the network is
to formulate guidance for good modeling practice (Schmolke
et al. 2010) that emphasizes consistency, transparency and
rigorous model evaluation as core elements of the modeling
process. And finally, 2 important opinions produced by expert
groups of European Union bodies highlight a significant role
for modeling in the future of ERA (EFSA PPR 2010, EC
2013a).

CONCLUSIONS

The tiered approach to ERA implies that the estimated risk
should reduce from lower to higher tiers on the presumption
that the lower tiers are sufficiently conservative. This means
that adding more ecological realism is likely to reduce the
estimates of risk, but as indicated above this may not always be
the case. Engaging in higher tiered assessments is expensive and
takes time, and it is hard to judge if the effort will be worthwhile
because the reduction is unpredictable; sometimes it is small,
and sometimes it is large (e.g., SSD vs mesocosm comparisons)
(Maltby et al. 2009). We have argued that the PSM approach is
a way of exploring the effects of ecological complexity on risk
for less expense and in less time in particular circumstances. In
principle, PSMs could in some cases replace existing higher-tier
studies and in other cases focus testing efforts on those factors
that are most likely to influence risk.

Vighi (2012) called for approaches “capable of answering
more Complex questions than dose/concentration- response
relationships can.” We agree that we need to move beyond
standard laboratory toxicity tests as the basis of ecological
effects assessments. However, we believe that coming to terms
with ecological complexity is only part of the challenge and that
effective risk management requires being able to calibrate
changes in adverse effects with changes in chemical exposure.
This underlines the fact that assessments based on thresholds of
effects are not helpful for risk management. Also making
endpoints more value relevant is key if ERAs are to provide a
basis for interventions that relate to effects that matter to
the public and that can be weighed against the costs of
interventions.

Much has been written over the years about the failure of
ERA to take account of ecological complexity, and there has
been recognition that improvements in risk assessment for the
sake of better management are required (NRC 2009; EC
2013b). We believe that progress is now possible because of
developments in the modeling and ongoing efforts to promote
dialogue among risk assessors, risk managers and modelers on
the key issues. The challenge here will be to establish forums for
dialogue that allow information exchange about what is valued
for protection without allowing values to bias the analyses and
conclusions (Calow and Forbes 2010).
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