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a  b  s  t  r  a  c  t

Models  based  on  Dynamic  Energy  Budget  (DEB)  theory  offer  important  advantages  in the  interpretation
of toxicant  effects  on  life-history  traits.  In contrast  to  descriptive  approaches,  they  make  use  of  all  of  the
data  (all  time  points,  and  all endpoints)  in  one  framework,  and  yield  time-independent  parameters.  In
1996, a suite  of simplified  DEB  models  for  the  analysis  of  standard  toxicity  tests  was  presented  under
the  name  ‘DEBtox’.  Unfortunately,  the  original  equations  contained  a few errors  and  inconsistencies.  In
this paper,  we  revisit  DEBtox,  presenting  a new  and  consistent  set of simplified  DEB  equations.  The full
derivation  is  presented  in  the  supplementary  material  to facilitate  critical  examination  of  our  work.  The
simplification  is  appropriate  for  situations  where  body  size  at  the start  of  investment  in  reproduction
ose–response analysis
KTD modelling
arameter estimation

remains  constant,  as  well  as  the  egg  costs  (and  thus  hatchling  size).  These  conditions  are  probably  met  in
many  ecotoxicological  tests,  allowing  this  framework  to  be  used,  at least  as  a first  approach.  Additionally,
we  present  a  statistical  framework  for  fitting  the  model  to experimental  data  sets,  and  to  calculate  inter-
vals on  parameter  estimates,  model  curves  and  model  predictions.  As  an  illustration,  we provide  a case
study  for  the  effects  of  fluoranthene  on  Daphnia  magna,  although  the  framework  is  by no  means  limited
to  this  species  or toxicant.
. Introduction

Models based on Dynamic Energy Budget (DEB) theory
Kooijman, 2010; Nisbet et al., 2000) offer important advantages in
he analysis and interpretation of toxicants effects on life-history
raits such as growth, reproduction and survival. In contrast to
escriptive approaches, a DEB-based analysis can make use of all
f the data (all time points, and all endpoints) in one framework,
nd yields time-independent parameters that can be compared
etween chemicals (Jager et al., 2004; Billoir et al., 2008b).  The the-
ry offers a link between effects on various endpoints, which is
ssential for extrapolation to the population level (Jager and Klok,
010; Klanjscek et al., 2006), and to interpret effects at the level of
ene expression (Swain et al., 2010). Furthermore, the DEB concept
s easily extended to deal with effects resulting from time-varying
xposure (Pieters et al., 2006) and mixtures of toxicants (Jager et al.,
010). The underlying principle is that toxicants, once taken up

n the body, influence the acquisition and/or use of energy by the
rganism. Toxicants may  for example decrease the feeding rate, or

ncrease maintenance costs. The idea of focussing on the energy
udget comes quite natural if we approach the problem from the
ther side: if there is a decrease in growth or reproduction of an

∗ Corresponding author. Tel.: +31 20 5987134; fax: +31 20 5987123.
E-mail address: tjalling.jager@vu.nl (T. Jager).
URL: http://www.debtox.info/ (T. Jager).

304-3800/$ – see front matter ©  2011 Elsevier B.V. All rights reserved.
oi:10.1016/j.ecolmodel.2011.11.012
© 2011 Elsevier B.V. All rights reserved.

individual, there is obviously less energy devoted to these pro-
cesses. So, where did that energy go to? Was  it never assimilated
from food in the first place, or was there an additional energy drain
somewhere in the organism?

The principle of interpreting toxic effects based on energy bud-
gets was  first formulated in the seminal paper of Kooijman and
Metz (1984).  More than a decade later, this approach was  stream-
lined into a simple model that could be used to analyse results
from standard toxicity tests (Kooijman and Bedaux, 1996a,b). This
approach was called ‘DEBtox’, and was  also implemented into freely
available software with the same name. These models were simple
enough to make use of the results from toxicity tests conducted
according to standard test protocols. The simplifications necessary
to derive these models do limit the possibilities for data analysis
in potentially serious ways (Jager et al., 2010). A full-scale DEB
model can provide an entirely consistent analysis of toxic effects,
but requires more parameters to be estimated from the data, and
often additional information (such as egg size and hatching time)
(Jager and Klok, 2010). Furthermore, there are quite a number
of situations were the full model does not provide much of an
added benefit, given the available experimental data (Jager and
Klok, 2010). For these reasons, we consider that there is a need for
simplified DEB models in ecotoxicology, although a new derivation

is required, as the original model equations of DEBtox contained
a few errors and inconsistencies. The major errors were spotted,
and corrected, by Billoir et al. (2008b), but a number of issues
remained.

dx.doi.org/10.1016/j.ecolmodel.2011.11.012
http://www.sciencedirect.com/science/journal/03043800
http://www.elsevier.com/locate/ecolmodel
mailto:tjalling.jager@vu.nl
dx.doi.org/10.1016/j.ecolmodel.2011.11.012


T. Jager, E.I. Zimmer / Ecological

F
b
i

d
s
t
d
t
a
f
w

2

2

f
I
s
c
p
t
a
m
b
g
fi
n
i
a
a
q
c
t
K
p

b
(
a
i
e
f
i
T
T
e
2
a
t

ig. 1. Schematic diagram of the energy flows in a standard DEB animal. The nodes
 and p denote switches at birth (start of feeding) and puberty (start of reproductive
nvestment). The mobilisation flux is split according to a constant fraction �.

In this paper, we present a set of simplified DEB equations,
erived from the equations in Kooijman (2010).  This derivation
olves the issues with the original set of equations; the full deriva-
ion is presented as supplementary material. Furthermore, we
iscuss the underlying assumptions and associated limitations of
his approach, and provide a pragmatic statistical framework to
nalyse experimental data. We  illustrate the possibilities of this
ramework by analysing a simple partial life-cycle study for the
ater flea Daphnia magna.

.  Theory

.1. Background of the simplified model for animals

The standard DEB animal is an animal that feeds on one kind of
ood, and does not change its shape over its life cycle (an isomorph).
ts biomass consists of two components, each with constant compo-
ition: structure (which requires maintenance) and reserve (which
an fuel metabolic processes). The energy flows are schematically
resented in Fig. 1. Food is taken up by the organism, and part of
he energy is assimilated into the reserve. The reserve is mobilised
nd split into two fluxes: a fraction � to the soma, and the rest to
aturation and reproduction. Somatic maintenance costs have to

e satisfied first, and the rest of the flux to the soma can be used for
rowth. Similarly, maturity maintenance costs have to be satisfied
rst and the remainder is used for maturation (in embryos and juve-
iles) or reproduction (in adults). The investment in reproduction

s collected in a reproduction buffer, which is converted into eggs
t spawning. None of the state variables can be measured directly;
uxiliary theory is needed to link model properties to observable
uantities. For example, the physical size of an organism contains
ontributions from reserve, structure, and possibly the reproduc-
ion buffer. More information about this model can be found in
ooijman (2010) and Kooijman et al. (2008),  and the equations
rovided in the supplementary material.

The equations for DEBtox (Kooijman and Bedaux, 1996b)  have
een derived from the full standard model by a re-parameterisation
to remove the dimension of ‘energy’ from the model system),
nd by using three additional assumptions. The first assumption
s that maturity is always a constant proportion of structure (for
mbryos and juveniles). Therefore, instead of a maturity threshold
or birth (the start of feeding) and puberty (the start of investment
nto reproduction), we can take thresholds for structural length.
herefore, we do not have to follow maturity as a state variable.
his assumption does not only have to hold for different food lev-

ls, but also under toxicant stress (see discussion in Jager et al.,
010). The second assumption is that the energetic costs for an egg
re constant under all circumstances. This contrasts the assump-
ion for ‘maternal effects’ in DEB theory, where egg costs depend
 Modelling 225 (2012) 74– 81 75

on the state variables of the mother (feeding status, and possibly
toxicant body burden). The third assumption is that the reserve is
always in a steady state with the food level. This is realistic when
we only consider situations with constant food levels, or when the
changes in food availability are slow relative to the dynamics of the
reserve. Other assumptions that are usually made when working
with DEBtox models (although not absolutely required) is that there
is no reproduction buffer (offspring are produced as a continuous
flux), and that the measured size of the organisms is proportional
to the structural size in the DEB model.

In the original DEBtox equations (Kooijman and Bedaux, 1996b),
the reproduction equations for effects on assimilation or main-
tenance were incorrect, probably owing to the complexities of
working consistently within a scaled-length framework. Billoir
et al. (2008b) corrected these errors, but other issues remained.
In the original equations, the Von Bertalanffy growth rate is not a
constant but a function of food availability (this is mentioned in
Kooijman and Bedaux, 1996b). To use this rate as a model param-
eter is quite impractical, because its value will depend on the food
level, and thus also changes when effects on assimilation are con-
sidered. A less conspicuous problem with the original formulation
is in its approach for considering an effect on growth costs. The sim-
plified approach assumes that length at puberty is always constant,
also under toxicant stress. For this to hold, the ratio of maturity to
structural size must remain constant. However, this ratio changes
when the costs for growth are affected, which implies that the
length at puberty will shift. A simple way  to repair this problem
is to assume that the toxicant also affects the costs for maturation
with the same factor as the costs for growth. This ensures that the
length at puberty remains constant, although the applicability of
this assumption remains to be tested. A final problem is that body
size in the equations is represented in scaled length (scaled to the
maximum size in the control), which makes a consistent applica-
tion of toxicant stress cumbersome and difficult to check. To solve
these issues, we derived a new set of simplified DEB equations.
Additionally, we included the reserve compartment as a dynamic
state. This does not cost additional parameters, and leads to a more
consistent approach when food levels vary or when there is a rapid
toxicant effect on assimilation.

2.2. Re-derived simplified DEB equations

An extensive derivation of the new set of DEBtox equations is
provided in the supplementary material. The state variables for the
organism are structural body length (L), scaled reserve density (e,
scaled with the maximum reserve density in the control, and so
between 0 and 1), and the scaled internal concentration of the tox-
icant (cV, scaled with the bioconcentration factor). A list of variables
and parameters is given in Table 1. We  strictly follow the notation
as laid down by Kooijman (2010),  including the convention to use
a dot above the symbol to indicate that a parameter is a rate with
a dimension that includes ‘per time’ (and thus not a derivative).

The differential equation for the scaled reserve dynamics is (t = 0
indicates the start of the experiment):

d

dt
e = (f − e)

v̇
L

with e(0) = 1 (1)

Here, f is the scaled functional response (1 indicates ad libitum food
availability, 0 implies no food at all), and v̇ is the energy conduc-
tance, which controls the rate at which reserves are mobilised. We
assume that the animals that are used to start the experiment are
from an ad libitum fed culture, and hence e(0) = 1. Including reserve

dynamics does not require any additional parameters, but it does
require an additional state variable, and thus calculation time. If this
is an issue, it can be assumed that e = f, which is acceptable when f
is constant or changes slowly, relative to the reserve dynamics.
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Table  1
DEB model parameters used in this paper with their symbols, interpretation and
dimensions (# for numbers, L for length of environment, l for length of organism, t
for  time).

Symbol Interpretation Dimensions

ḃ† Scaled killing rate L3#−1t−1

c0 Scaled internal threshold concentration #L−3

c0† Scaled internal threshold for survival #L−3

cd Dissolved external concentration of toxicant #L−3

cT Scaled internal tolerance concentration #L−3

cV Scaled internal concentration of toxicant #L−3

e Scaled reserve density (0–1) [−]
f  Scaled functional response (0–1), in control f0 [−]
g  Energy investment ratio, in control g0 [−]
ḣ0 Background hazard rate for survival t−1

k̇e Elimination or ‘dominant’ rate constant (at L = Lm) t−1

k̇M Somatic maintenance rate coefficient, in control k̇M0 t−1

L Structural body length l
L0 Structural body length at start of experiment l
Lp Structural body length at puberty l
Lm Maximum structural body length, in control at f = 1 l
ṙB Von Bertalanffy growth rate, in control at f = 1 t−1

Ṙ Reproduction rate #t−1

Ṙm Max. reproduction rate (at f = 1, L = Lm), in control Ṙm0 #t−1

H
t
a
c
f
c
g
e
K

e
l
t
a
o
f
i
t
s
o
s

t

R

w
m
m
r
d
W
a
t
t

s Stress factor (0 in control) [−]
v̇ Energy conductance lt−1

For structural length, the resulting differential equation is:

d

dt
L = k̇Mg

3(e  + g)

(
e

v̇

k̇Mg
− L

)
with L(0) = L0 (2)

ere, k̇M is the rate coefficient for somatic maintenance (ratio of
he volume-specific maintenance costs and the cost for structure),
nd g the energy investment ratio (the ratio between the energetic
osts for structure and the maximum potentially available energy
or the soma). This equation reduces to the Von Bertalanffy growth
urve when the parameters are constant. Some deviations from this
rowth pattern may  in fact be experimental artefacts, and can for
xample be included as a size-dependent food limitation (Jager and
lok, 2010).

In DEB theory, L stands for structural length, which does not
qual physical body length. For isomorphs however, appropriate
ength measures will be proportional to the structural length, and
he proportionality can be absorbed in the value of v̇. An appropri-
te size measure is one that is little affected by changes in reserve
r the build up of a reproduction buffer. Examples are the distance
rom the eye to the base of the spine in Daphnia, and shell length
n snails. The cubic root of body weight or volume can also be
reated as proportional to structural length, although these mea-
ures will be more sensitive to changes in reserve and the build up
f a buffer. Of course, the contribution of buffer and reserve to the
ize measurements can be included, at the cost of extra parameters.

For the reproduction rate Ṙ we end up with the following equa-
ion:

˙
 =

⎧⎨
⎩

0 if L < Lp

Ṙm

L3
m − L3

p

((
v̇

k̇M

L2 + L3

)
e

e + g
− L3

p

)
otherwise

(3)

here Ṙm is the maximum reproduction rate (at maximum food and
aximum size), Lm is the maximum body length (in the control, at
aximum food), and Lp is the length at puberty (i.e., at the start of

eproductive investment). This equation yields a continuous repro-
uction rate whereas in reality animals produce discrete offspring.

e can add a reproduction buffer to collect the reproduction flow,

nd allow only discrete offspring. However, we can also work with
he continuous rate and compare the integrated reproduction to
he observed offspring produced in an interval (see Section 3.4).
Modelling 225 (2012) 74– 81

Instead of the rather abstract k̇M and v̇, we  can use the more intu-
itive maximum length Lm and Von Bertalanffy growth rate constant
ṙB (both in the control at maximum food) as our parameters. These
relate to the DEB parameters in the control, which are indicated
with an additional subscript 0 (k̇M0 and g0):

ṙB = k̇M0g0

3(1 + g0)
and Lm = v̇

k̇M0g0
(4)

Note that we  do not consider effects on v̇ because that would affect
the scaling of reserve density e; v̇ therefore does not need a sub-
script. If g0 is given, we  can derive k̇M0 and v̇ as:

k̇M0 = ṙB
3(1 + g0)

g0
and v̇ = Lmk̇M0g0 (5)

The parameters k̇M0 and v̇ are thus calculated from Lm, ṙB and g0.
This brings the list of input parameters for the simplified DEB model
to: L0, Lp, Lm, ṙB, Ṙm0, g0, f0.

2.3. Effects on toxicants on the energy budget

Toxicants need to be taken up into the body before they can exert
their effects. However, body residues are not routinely determined
in toxicity tests, and it is by no means certain that the concentration
in the whole body is truly representative for toxicity. Therefore,
the internal concentration will play the role of a hidden variable
and its kinetics will be deduced from the development of the toxic
effects on the observed endpoints over time (see Jager et al., 2011).
The scaled internal concentration (scaled with the bioconcentra-
tion factor) cV has the dimensions of an external concentration; in
steady state, the scaled internal concentration will equal the exter-
nal concentration cd. The scaling concept, and the derivation of Eq.
(6), is explained in more detail in the supplementary material.

Because we  are dealing with growing organisms, the change
in body size needs to be accounted for in the uptake model. An
increase in size leads to dilution of the internal concentration, but
also to a decrease in the surface:volume ratio (we assume isomor-
phy). The exchange of the toxicant with the environment is across a
surface area, so this factor needs to be included as well. The model
for the scaled internal concentrations as a function of body length
L than becomes:

d

dt
cV = k̇e

Lm

L
(cd − cV ) − cV

3
L

d

dt
L (6)

Here, k̇e is the elimination rate of an organism at the maximum
size Lm; smaller individuals will have a larger elimination rate. The
last term in the equation accounts for dilution of the internal con-
centration by growth. The single toxicokinetic parameter k̇e has to
be estimated from the effects data. Survival data generally provide
sufficient information to fit this parameter (Jager et al., 2011), but
its identifiability from sub-lethal data is often poor (Billoir et al.,
2008b). Eq. (6) is the simplest toxicokinetics model that accounts
for a change in body size in a consistent manner, but this equation
can be replaced by more elaborate models if needed.

The defining principle of the DEBtox approach is that some inter-
nal concentration affects the value of one or more parameters in a
DEB model. For the relationship between the scaled internal con-
centration and the stress on a model parameter, we assume:

s = 1
cT

max(0,  cV − c0) (7)

In this definition, s is a dimensionless indicator of the degree of
stress on a model parameter. Below the no-effect concentration

c0, there are no effects. When the scaled internal concentration
exceeds c0, the stress function increases in a linear fashion. As cV

has the dimensions of an external concentration, so c0 and cT also
have this dimension. The c0 can thus be interpreted as the external
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Table  2
Possible physiological modes of action for the simplified DEBtox model (combina-
tions of these 5 are also possible). Parameters that are not mentioned in the table
for a specific mode of action are set to their value in the control (e.g., f = f0, for all but
the  first mode).

Mode of action DEB parameters under stress

Assimilation from food f = f0 max  (0, 1 − s)
Somatic and maturity maintenance k̇M = k̇M0(1 + s), Ṙm = Ṙm0(1 + s)
Costs for structure and maturation g = g0(1 + s), k̇M = k̇M0(1 + s)−1
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Overhead costs for making an egg Ṙm = Ṙm0(1 + s)−1

Hazard during oogenesis Ṙm = Ṙm0exp(−s)

oncentration that does not lead to exceedance of the internal
hreshold, even after prolonged exposure. To use the simplified
EB model with toxicants, we thus add three parameters to our

ist: ke, c0 and cT.
The choice for this particular relationship is partly for simplic-

ty (it requires only two parameters), but the use of a threshold
as a more fundamental logic. We  cannot expose an organism to

 single toxicant in isolation; all chemicals are toxic, and there
ill always be a multitude of unidentified chemicals in the test
edium and inside the organism. Invoking the threshold concept,
e can assume that all these unknown chemicals are below their

espective thresholds, and ignore their effects.
For effects on mortality, we could use the same scaled internal

oncentration cV to link to a mortality mechanism such as stochas-
ic death (see Jager et al., 2011, for details). In that way, effects on

ortality will have their own toxicity parameters, but are linked
o the sub-lethal effects because they share the same internal con-
entrations.

Which model parameter will be affected by a toxicant? An
ffect on each DEB parameter has specific consequences for the
ife-history traits, what we can call a physiological mode of action
Alda Álvarez et al., 2006). Table 2 lists the physiological modes
f action (i.e., the DEB parameter affected by toxic stress) that we
an invoke for the simplified model (see suppl. mat.). The actual
odel parameters are calculated from their counterparts in the

ontrols (with subscript 0) depending on the mode of action. We
re limited in the number of modes of action that we can apply,
ecause we have to insure that the length at puberty remains con-
tant (the main assumption for the simplification). For this reason,
e have to increase somatic and maturity maintenance costs by

he same factor, and we have to increase the costs for maturation
hen we increase costs for growth. Changing these processes inde-
endently, or analysing effects through other parameters such as �,
iolates the assumptions behind the simplification and thus leads
o inconsistencies.

The set of equations presented here is essentially equivalent to
hose presented by Billoir et al. (2008b) for the case where reserve
ynamics can be ignored (e = f), under ad libitum food availabil-

ty (f = 1), and working in a scaled-length framework. Alternative
implified DEB models for toxicity analysis have been published by
lok and De Roos (1996) and Muller et al. (2010).  Both approaches
o not consider body residues, reserves and maturity as (explicit)
tate variables and are therefore further reduced than the model
resented here (which includes toxicokinetics and reserve dynam-

cs). The work of Klok and De Roos was based on the original model
f Kooijman and Metz (a discussion of the differences can be found
n Jager and Klok, 2010). The approach of Muller and co-authors is
loser to the model presented here, although a different strategy is
ollowed for the incorporation of toxic effects.
.4. Limitations of the simplified model

The simplified model as presented in the previous section has
imitations that need to be considered. The simplification rests
 Modelling 225 (2012) 74– 81 77

heavily on the constancy of the length at puberty and the egg costs.
Whenever there are indications in the experimental data that this
condition is not satisfied, a full-scale DEB model for toxicants (Jager
et al., 2010) is appropriate. Adding an ad hoc parameter to decrease
Lp as a function of toxicant stress (as done in Alda Álvarez et al.,
2006) is not generally recommendable and may  lead to bias in the
interpretation of the effects.

In this simplified model, we do not deal with the embryonic
phase, and also not with ageing. DEB theory (Kooijman, 2010) deals
with these aspects, but it remains to be investigated how these
concepts are best translated to the simplified model, and how toxi-
cants can affect them. Also, we do not explicitly consider starvation,
which occurs when somatic maintenance costs cannot be paid
from the mobilised reserves. Starvation implies a deviation from
the standard rules, which is probably species specific, and rapidly
requires a full-scale model.

3. Applying the theory in practice

3.1. Data needs

It is difficult to generalise the data needs for this simplified
model. Weaker data sets can still be analysed by making use of
defaults, prior information, or educated guesses. The weakness of a
data set will be reflected in the confidence intervals of the param-
eters. In general, the most appropriate data would be (partial)
life-cycle studies were body size, reproduction and survival are fol-
lowed from juvenile to fully grown adult, with regular observations
over time. Such data provide the best opportunity to estimate all
model parameters, and allow for ecologically relevant predictions
(see Section 4). Data for body size alone over time can also be used
effectively, reducing the model even further (see also Kooijman and
Bedaux, 1996a). The use of reproduction data without observation
on body size is not generally recommendable. Even though defaults
may  be used (see Kooijman and Bedaux, 1996b), it may  be difficult
to select an appropriate mode of action. Effects on survival alone
can be analysed, as long as effects on body size can be ignored. In
that case, the simplified model reduces to the DEBtox version of the
general survival framework (GUTS, see Jager et al., 2011).

3.2. Selecting a mode of action

Energy fluxes in DEB are model abstractions and cannot be
directly measured; we  cannot measure maintenance fluxes or
reproduction overheads. These processes do, however, have conse-
quences for measurable properties such as body size and offspring
production. Thus, we  can infer the affected process from the time
patterns of effects on the endpoints. Each physiological mode of
action has specific consequences for the patterns of growth and
reproduction over the life cycle. Effects on assimilation and mainte-
nance lead to similar patterns with smaller ultimate body size, and
delayed reproduction. These two modes are often difficult to distin-
guish without additional observations (e.g., oxygen use). Increasing
the costs for structure leads to slower growth, but no effect on the
ultimate body size, and also a delay in reproduction. The last two
modes (costs for eggs and hazard during oogenesis) lead to similar
effects on reproduction only: no delay in the start of reproduction,
but only a decrease in reproduction rate.

In some cases, the data may  strongly suggest one particular
mode of action, whereas in other cases several can provide an
adequate explanation. The estimation of an effect threshold (c0)

does not seem to be very sensitive to the choice of action mode
(Kooijman and Bedaux, 1996b),  but there can be differences when
extrapolating to untested conditions (e.g., food, temperature), or for
unobserved endpoints (e.g., feeding rates, oxygen use). If the choice
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or an appropriate action mode matters, the only solution would be
o set up additional experiments, using model simulations to show
here alternative explanations will yield different predictions.

.3. Statistical approach to fit the model

Fitting realistic models to realistic data sets is often a statistical
inefield. When we follow the same group of organisms in a test

ver time, the resulting data will not be independent. The model
redicts reproduction as a continuous rate (e.g., number of eggs per
ay), whereas we observe discrete number of offspring produced
y one or more females in a time interval. Growth and reproduction
re graded endpoints (we measure the degree of response in every
ndividual), whereas survival is a quantal endpoint (we  count the
umber of surviving individuals over time; each individual is either
ead or alive). Clearly, these endpoints are not directly comparable,
et they share information about the same underlying parameters,
s all endpoints are linked. As an additional complication, most of
he deviation between model and data is not caused by random

easurement errors. This is a popular simplifying assumption in
tatistics, but in reality these deviations will mainly result from
iological variation and, obviously, because the model is incorrect.

Given the complexity of this issue and the general quantity and
uality of the available data, we have to settle for a pragmatic
pproach. A likelihood framework is our first choice, as it is pow-
rful, general, and allows us to combine the fits of all endpoints
quantal and graded) into a single value to be optimised (Jager et al.,
004). For survival data, the multinomial likelihood follows nat-
rally (Bedaux and Kooijman, 1994; Jager et al., 2011, see suppl.
at.). For graded endpoints like body size and reproduction, the

election of an appropriate scatter structure is more troublesome.
ere, we will stick to the common assumption in regression analy-

is of independent normal distributions for the error. Even though
his assumption is almost always violated, more appropriate alter-
atives will often be too complex for analysing basic toxicity data.
evertheless, in our opinion, this is an area that needs further con-

ideration in the future.
Under the assumption of independent normal distributions with

onstant variance �2, the log-likelihood � of the parameter set �,
iven the data Y is:

(�, �2|Y) = −N

2
ln(2��2) − 1

2�2
SSQ(�; Y) (8)

here N is the total number of data points, and SSQ the sum of the
quared residuals (worked out in the next section). There are two
bvious ways to simplify the likelihood equation. The first would
e to select a value for �2, e.g., estimate it from the data set (see
illoir et al., 2008a).  When �2 is constant, the first term of Eq. (8)
oes not depend on the parameters and can be ignored (we only
eed to know the likelihood up to a proportionality):

(�|Y, �2) = − 1
2�2

SSQ(�; Y) + C (9)

eteroscedasticity can be accommodated by an appropriate choice
or �2 for different parts of the data set. Alternatively, we could
lso apply a transformation for model and data in the calculation of
he SSQ. For example, log-transformation would be equivalent to
aking a skewed error distribution, with a variance that increases
ith the value of the endpoint.
In the second simplification, we use the method of profile like-
ihoods to remove the error variance; i.e., replace this parameter
y its maximum likelihood estimate (Pawitan, 2001). The estimate
or �2 depends on �, and is the SSQ divided by the number of
Modelling 225 (2012) 74– 81

observations N. Replacing this estimate in the likelihood function
leads to the following simple result:

�(�|Y) = −N

2
ln SSQ(�; Y) + C (10)

Here, the error variance is taken homoscedastic, although appro-
priate transformation of model and data in the SSQ can be used.
Furthermore, it is possible to use this equation on parts of the
data set separately, and add the resulting log-likelihood functions,
which allows a different variance for each part.

Both simplifications will yield the same best-fitting set of
parameters, when applied on a single data set. However, when
combining different data sets into the fit (e.g., body size and repro-
duction data), results can differ. Furthermore, both methods can
yield different confidence intervals. The profile likelihood is gen-
erally preferable unless we have a good estimate for �2 (Pawitan,
2001).

3.4. Deriving sums-of-squares

Replicated observations are represented as Yijr, where i is the
time point of the observation (from 1 to k), j the exposure concen-
tration (from 1 to m),  and r the replicate individuals (1 to n). The
number of observation times may  depend on the treatment (and
thus kj), and the number of replicates may  depend on both time
and treatment (and thus nij). The total number of observations N is
thus:

N =
m∑

j=1

kj∑
i=1

nij (11)

The sum-of-squares (SSQ) is calculated as:

SSQ(�; Y) =
m∑

j=1

kj∑
i=1

nij∑
r=1

(Ŷij(�) − Yijr)2 (12)

If needed, we can modify the scatter distribution by transforming
the model predictions and the data, e.g., using log-transformation.

For reproduction, we need to compare the continuous repro-
duction from the model to the discrete observations in the data.
In previous analyses (Kooijman and Bedaux, 1996b),  both model
and data were recalculated to cumulatives over time, and the
(weighted) SSQ determined. This cumulation procedure, however,
induces even more dependence in the data set. In our opinion, a
better approach is to compare the number of offspring produced
by an individual mother in an interval between t − 1 and t, Yijr, to
the integrated reproduction rate over that interval:

SSQ(�; Y) =
m∑

j=1

kj∑
i=2

nij∑
r=1

(∫ ti

ti−1

Rj(�, �)d� − Yijr

)2

(13)

But what do we  do with the offspring produced when the mother
dies in the interval? We  could throw away this observation, or
divide the model prediction by two  (assuming that the mother died
half-way in the interval).

Often, we  do not have the data for the individuals, but only the
mean of a number of replicates. For the first simplified likelihood
(Eq. (9)), we  can use means if we  apply the correct error variance

for that observation (note that the variance of a mean is the
variance of the replicates �2 divided by the number of replicates,
nij). When the variance of the replicates is known, the means carry
the same information for the likelihood function as the individual
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ig. 2. Fit of the simplified DEB model to data for Daphnia magna,  exposed to fluor
redible intervals on the model curves.

easurements, and we can simply exchange the SSQ in Eq. (9)
ith a weighted SSQ (see suppl. mat.):

SSQn(�; Y) =
m∑

j=1

kj∑
i=1

nij(Yij − Ŷij(�))2 (14)

or the second likelihood simplification (Eq. (10)), the situation is
omewhat more complex. The variance is optimised based on the
ata and the model parameters, but information is lost when taking
he means. In this case, the log-likelihood function requires not only
he weighted SSQ of Eq. (14), but also an SSQ weighted with n2 (see
uppl. mat.):

(�|Y) = −NY

2
ln(wSSQn2 (�; Y)) − NwSSQn(�; Y)

2wSSQn2 (�; Y)
+ C (15)

SSQn2 (�; Y) =
m∑

j=1

kj∑
i=1

n2
ij(Yij − Ŷij(�))2 (16)

here NY is the number of means, whereas N is the total number of
ndividual data points on which these means were based (see Eq.
11)). Note that when nij is the same for all means, the second term
f the likelihood function is constant and can be absorbed in C. In
hat situation, means can be treated like individual data points.

For reproduction tests, it is common that the adults are kept
n groups. In that case, we have to use the mean of the offspring
roduced. Problems occur when one or more of the mothers die
etween observations. A pragmatic solution would be to use the
verage number of adults to calculate the mean reproduction, and
o use as nij to weigh the SSQs analogous to Eqs. (14) and (16).

.5. Optimisation and confidence intervals

If multiple data sets share common parameters, we need to com-
ine the likelihoods for each data set into one overall likelihood. If
he data sets are independent, we can take the product of the indi-
idual likelihoods, and thus the sum of the log-likelihoods. Even
hough the assumption of independence is also usually violated, we
onsider it a pragmatic simplification. This overall log-likelihood
an be maximised, and used to calculate confidence intervals using
rofile likelihoods (see e.g., Pawitan, 2001) or applied in a Bayesian
ramework (see e.g., Billoir et al., 2008a).  In the absence of strong
rior information, a Bayesian calculation will generally produce
esults similar to a likelihood approach. However, with the Bayesian
ramework, it is more straightforward to calculate simultaneous

redible intervals for multiple parameters, and to construct inter-
als around model predictions (e.g., Ashauer et al., 2010). Because
he assumptions regarding the scatter structure are generally vio-
ated, the confidence intervals have to be regarded as approximate.
ne. Symbols are means for the concentration and time point; dashed lines are 95%

In many cases, the available data sets will be insufficient to
accurately identify all model parameters. In the original DEBtox
approach (Kooijman and Bedaux, 1996b), several parameters were
fixed to default values for D. magna.  This allows working with
results from standard toxicity tests, which usually do not include
determination of body size. Billoir et al. (2008a) advocate a Bayesian
approach, using informative priors for such parameters.

The simplified set of equations and the fitting procedure have
been implemented in Matlab R2010a. The complete series of scripts
and functions can be downloaded from http://www.debtox.info/.
The log-likelihood function is maximised using a Nelder-Mead
Simplex routine (fminsearch). For Bayesian calculations, we imple-
mented the slice sampler (slicesample) as provided in the Matlab
Statistics Toolbox to yield a random sample from the posterior
distribution. Slice sampling is a Markov chain technique that is effi-
cient and easy to implement for routine application (Neal, 2003).
This random sample is subsequently used to calculate credible
intervals for the parameter estimates (as 2.5–97.5 percentiles of
the sample from the posterior distribution), and for model curves
(as 2.5–97.5 percentiles of the model values for each sample at each
time point, see Ashauer et al., 2010).

4. Case study

To illustrate the model behaviour and statistical procedure, we
take a data set for D. magna exposed to fluoranthene. Observa-
tions on body size, offspring production, and survival are available
over 21 days. This data set is part of the mixture study pub-
lished by Jager et al. (2010),  who performed an analysis with a
full DEB model and interpret the results in more detail. The obser-
vations on body size were made on a separate group of animals,
from which five animals were destructively sampled at each time
point, for each concentration. Because sampling was  destructive,
the assumption of an error following independent normal distri-
butions is defensible, and the scatter structure does not reveal
appreciable heteroscedasticity. For the observations on survival
and offspring production, a different group of animals was followed,
starting at t = 0 with 10 animals in each treatment. Because sur-
vival and reproduction over time were determined on the same
animals, independence is compromised. Another problem is that
the animals do not always produce a brood in each observation
interval, which implies the regular occurrence of zeros in the
data. Instead of trying to model this scatter structure in detail, we
decided to move it closer to normality by working with the means
for each time point and concentration. Observations for the two

controls were combined, and several parameters were fixed. The
food availability was  assumed to be ad libitum (f = 1), initial size
was  fixed to the mean observed size (because its error is likely
much smaller than that of the other observations), and the energy

http://www.debtox.info/
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Table  3
Results of the fit of the simplified DEB model on the dataset for D. magna exposed to
fluoranthene. Maximum likelihood estimates with approximate credible intervals
(n.e. means not estimated).

Parameter Value 2.5–97.5 percentiles Unit

f0 1 n.e. [–]
g0 0.422 n.e. [–]
L0 0.88 n.e. mm
Lp 1.67 1.39–2.03 mm
Lm 3.13 3.08–3.19 mm
ṙB 0.136 0.126–0.144 d−1

Ṙm0 11.5 11.7–13.0 #d−1

ḣ0 2.42 0.821–8.61 10−3 d−1

k̇e 0.0247 0.00742–0.0567 d−1

c0† 0.102 0.0285–0.238 �M
ḃ† 1.69 1.70–2.90 �M−1 d−1
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Fig. 3. Sample from the posterior distribution, shown as no-effect concentration
for  survival (c0†) and metabolic effects (c0) versus the dominant elimination rate
constant (k̇e).
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Fig. 4. Population growth rate (intrinsic rate of increase), calculated from the model
c0 0.0418 0.0136–0.0798 �M
cT 1.69 0.205–13.5 nM

nvestment ratio g was fixed to the value provided by Kooijman
t al. (2008),  as this parameters could not be identified from this
ata set.

A more subtle issue is that reproduction in the model is the
ransformation of the buffer into eggs. For Daphnia, however, we
ount the release of neonates from the brood pouch, which occurs
everal days later. We  compensate for this by shifting the obser-
ations in the comparison with the model prediction by 2.5 days,
hich is a reasonable estimate for instar duration (Nogueira et al.,

004).
In Fig. 2, the maximum-likelihood fit of the model to the data

s presented. The selected mode of action was an increase in the
osts for producing offspring. A hazard during oogenesis provides

 worse, but still reasonable fit. The other modes of action in Table 2
re unlikely as these are associated with strong effects on body size,
hich were not observed. This does not proof that the reproduc-

ion costs are indeed increased by fluoranthene, but rather that
his is the simplest explanation within the DEB framework that is
onsistent with the observed effect patterns. More detailed stud-
es in D. magna (Barata and Baird, 2000) showed that fluoranthene
ffects both the production of eggs as well as egg mortality during
ncubation in the brood pouch. However, that study is not directly
omparable as it showed substantial effects on body size in con-
rast to our data set. Such differences in effect patterns may  relate
o genotypic differences between clones of this species, or to dif-
erences in the experimental conditions.

The parameter estimates associated with the fit in Fig. 2 are
iven in Table 3. For the credible intervals, an MCMC  sample
rom the posterior distribution was taken (5000 samples, a burn
n with 1000 samples, and taking every second sample), apply-
ng uniform (presumably uninformative) prior distributions. This
ample was used to calculate intervals for the parameter esti-
ates (Table 3), and to produce credible intervals on the model

urves (Fig. 2). Interestingly, the credible intervals for both no-
ffect concentrations (Table 3, c0† for survival and c0 for sub-lethal
ffects) overlap. However, plotting the samples from the posterior
or these no-effect concentrations versus the dominant elimination
ate constant k̇e (Fig. 3) clearly shows how distinct both parameter
stimates actually are. Both thresholds are strongly correlated to
his rate constant.

The sample from parameter space can also be used to produce
ntervals on model predictions. As an example, we provide an esti-

ation of the intrinsic rate of population increase in Fig. 4, as
alculated from the parameters in Table 3 (see Jager et al., 2004;

ooijman and Bedaux, 1996b,  integrating over 42 days; twice the
uration of the study). This rate integrates the responses of all
ndpoints and their associated uncertainty into an ecologically
eaningful statistic. Here, we plotted the population growth rate
parameters of Table 3, with 95% credible intervals for the model curve. Popula-
tion  growth rate is normalised to the value in the control for each sample from the
posterior.

normalised to the rate in the control, which is probably most rele-
vant. Fig. 4 clearly shows that despite the substantial confidence
interval on the no-effect concentrations in Table 3), the model
predicts very little effect of the compound on the population, up
to a concentration of about 0.2 �M.  At higher concentrations, the
predictions rapidly become very uncertain, reflecting the limited
information in the data set.

5. Conclusions

In this paper, we present a new and consistent set of simpli-
fied DEB equations that can be used to interpret ecotoxicity test
results. The full derivation of these equations is presented in the
supplementary material to facilitate critical examination of our
work. The simplification is appropriate for situations where length
at puberty and egg costs (and thus hatchling size) remain constant.
These conditions are probably met  in many ecotoxicological tests,
making this framework a useful tool, at least as a first approach.
As an example, the analysis by Jager and Klok (2010) showed that
the conclusions drawn from a simple DEBtox calculation can be

quite comparable to those of a full-blown DEB model. The statistical
framework that we present enables fitting the model to experi-
mental data sets, and allows calculation of intervals on parameter
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stimates, model curves and model predictions, as illustrated with
he case study. This statistical framework is certainly not a per-
ect fit to the problem; in general, the available data will violate
he underlying assumptions for the scatter structure. However, we
elieve this is a pragmatic solution to keep the analysis simple,
lthough further study is certainly needed.

The case study shows how this framework is applied to a real
ata set; analysing all data simultaneously. Even though we used
he popular test species D. magna for our illustration, the model
s by no means limited to this species. Simplified DEB models have
een successfully used to analyse toxicity data for a range of species,

ncluding springtails (Jager et al., 2004), nematodes (Alda Álvarez
t al., 2006), earthworms (Jager and Klok, 2010), and bivalves
Muller et al., 2010). We  hope that the presentation of this mod-
lling framework, together with the detailed derivation and the
vailable Matlab code, increases the acceptance of such dynamic
odelling approaches in the field of ecotoxicology and ecotoxico-

ogical risk assessment.
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